Processing math: 0%

How to write Transfer Function by inspection

 Part2: Introduction to 2nd order system

In Part1, I have given you a glimpse of how to write the transfer function by inspection. As I have told you, the sole intention of the Part1 was only to talk about the notations (Subscript & Superscript) because they might be little bit confusing at starting. Once you gain a grip on that, rest will be a cakewalk for you. 

In Part1, I also have given some 1st order circuit example. There you could have argued that, it's way easy to mathematically derive the TF instead of this method. I agree, but those examples were just to make you habituated with the process. Here, in Part2, I have shown you some 2nd order circuits which will actually highlight the importance and handiness of this method. I will suggest you to first give them a try, then only you look at the solutions.


First let's quickly recap the notations once again.

  • SubScript : denotes the index of the reactive element, from where we have to calculate the R_{eq} in order to find the time constant \tau
  • SuperScript : denotes the index(es) of the infinite valued element(s). An index 0 in the superscript simply indicates that no reactive element is infinite values i.e. all elements are at their zero values.

Note 

  • From the above conventions, I hope it is clear that there can be single or multiple index(es) in the superscript, but there has to be only one index in the subscript.
  • For a capacitor C_1\tau =R_{eq}C_1
  • For an inductor L_1\tau =\frac{L}{R_{eq}}


Let's take Example 3, which I have given as an assignment and then we shall move to 2nd order systems.

Example 3: Determine H\left(s\right)=\frac{v_{out}}{v_{in}} from Figure 3a



Figure 3: a) An RC filter, b) Model for H^0 calculation, c) Model for H^1 calculation, d) Model for H^2 calculation, e) Circuit for \tau _{1}^{0} calculation, f) Circuit for \tau _{2}^{0} calculation.

H\left ( s \right )=\frac{a_0+a_1s}{1+b_1s}

1. H^0 :  H when C_1=C_2=0

 From Figure 3b, H^0=\frac {R_2}{R_1+R_2}

2. H^1 :  H when C_1\rightarrow \infty  and C_2=0 
 
From Figure 3c, H^1=1

3. H^2 :  H when C_2\rightarrow \infty  and C_1=0 
 
From Figure 3d, H^2=0

4. \tau _{1}^{0} : Time constant associated with C_1 when C_2=0

From Figure 3e, \tau _{1}^{0}=C_1 \times R _{1}^{0}=C_1\left ( R_1||R_2 \right )

5. \tau _{2}^{0} : Time constant associated with C_2 when C_1=0

From Figure 3f, \tau _{2}^{0}=C_2 \times R _{1}^{0}=C_2\left ( R_1||R_2 \right )


a_{0}=H^{0}=\frac {R_2}{R_1+R_2}

a_{1}=\tau _{1}^{0}H^{1}+\tau _{2}^{0}H^{2}=C_1\left ( R_1||R_2 \right )

b_1=\tau_1^0+\tau_2^0=\left(C_1+C_2\right)\left(R_1||R_2\right)


H\left ( s \right )=\frac{a_0+a_1s}{1+b_1s}=\frac{\frac {R_2}{R_1+R_2}+C_1\left ( R_1||R_2 \right )s}{1+\left(C_1+C_2\right)\left ( R_1||R_2 \right )s}=\frac {R_2}{R_1+R_2}\frac{1+C_1R_1s}{1+\left(C_1+C_2\right)\left ( R_1||R_2 \right )s}


Example 4: Determine H\left(s\right)=\frac{v_{out}}{v_{in}} from Figure 3a


Figure 4: a) A 2nd order RC low-pass filter. b) Model for H^0 calculation, c) Model for H^1 calculation, d) Model for H^2 calculation, e)Model for H^{12} calculation, f) Circuit for \tau _{1}^{0} calculation, g) Circuit for \tau _{2}^{0} calculation, h) Circuit for \tau _{2}^{1} calculation.

H\left ( s \right )=\frac{a_0+a_1s+a_2s^2}{1+b_1s+b_2s^2}

1. H^0 :  H when C_1=C_2=0

 From Figure 4b, H^0=1

2. H^1 :  H when C_1\rightarrow \infty  and C_2=0 
 
From Figure 4c, H^1=0

3. H^2 :  H when C_2\rightarrow \infty  and C_1=0 
 
From Figure 4d, H^2=0

4. H^{12} :  H when C_1,C_2\rightarrow \infty  
 
From Figure 4e, H^{12}=0

5. \tau _{1}^{0} : Time constant associated with C_1 when C_2=0

From Figure 4f, \tau _{1}^{0}=C_1 \times R _{1}^{0}=C_1R_1

6. \tau _{2}^{0} : Time constant associated with C_2 when C_1=0

From Figure 4g, \tau _{2}^{0}=C_2 \times R _{2}^{0}=C_2\left ( R_1+R_2 \right )

7. \tau _{2}^{1} : Time constant associated with C_2 when C_1 \rightarrow \infty

From Figure 4h, \tau _{2}^{1}=C_2 \times R _{2}^{1}=C_2R_2

a_{0}=H^{0}=1
a_{1}=\tau _{1}^{0}H^{1}+\tau _{2}^{0}H^{2}=C_1R_1 \times 0+C_2\left(R_1+R_2\right) \times 0=0
a_{2}=\tau _{1}^{0}\tau_{2}^{1}H^{12}=C_1R_1 \times C_2R_2 \times 0=0
b_1=\tau_1^0+\tau_2^0=C_1R_1+C_2\left(R_1+R_2\right)
b_{2}=\tau _{1}^{0}\tau_{2}^{1}=C_1R_1 C_2R_2


H\left ( s \right )=\frac{a_0+a_1s+a_2s^2}{1+b_1s+b_2s^2}=\frac{1}{1+\left[C_1R_1+C_2\left(R_1+R_2\right)\right]s+C_1R_1C_2R_2s^2}


Example5: Determine H\left(s\right)=\frac{v_{out}}{v_{in}} from Figure 5a


Figure 5: a) A 2nd order RC band-pass filter. b) Model for H^0 calculation, c) Model for H^1 calculation, d) Model for H^2 calculation, e)Model for H^{12} calculation, f) Circuit for \tau _{1}^{0} calculation, g) Circuit for \tau _{2}^{0} calculation, h) Circuit for \tau _{2}^{1} calculation.

H\left ( s \right )=\frac{a_0+a_1s+a_2s^2}{1+b_1s+b_2s^2}

1. H^0 :  H when C_1=C_2=0

 From Figure 5b, H^0=0

2. H^1 :  H when C_1\rightarrow \infty  and C_2=0 
 
From Figure 5c, H^1=0

3. H^2 :  H when C_2\rightarrow \infty  and C_1=0 
 
From Figure 5d, H^2=\frac{R_2}{R_1+R_2}

4. H^{12} :  H when C_1,C_2\rightarrow \infty  
 
From Figure 5e, H^{12}=0

5. \tau _{1}^{0} : Time constant associated with C_1 when C_2=0

From Figure 5f, \tau _{1}^{0}=C_1 \times R _{1}^{0}=C_1R_1

6. \tau _{2}^{0} : Time constant associated with C_2 when C_1=0

From Figure 5g, \tau _{2}^{0}=C_2 \times R _{2}^{0}=C_2\left ( R_1+R_2 \right )

7. \tau _{2}^{1} : Time constant associated with C_2 when C_1 \rightarrow \infty

From Figure 5h, \tau _{2}^{1}=C_2 \times R _{2}^{1}=C_2R_2

a_{0}=H^{0}=0
a_{1}=\tau _{1}^{0}H^{1}+\tau _{2}^{0}H^{2}=C_1R_1 \times 0+C_2\left(R_1+R_2\right) \times \frac{R_2}{R_1+R_2}=C_2R_2
a_{2}=\tau _{1}^{0}\tau_{2}^{1}H^{12}=C_1R_1 \times C_2R_2 \times 0=0
b_1=\tau_1^0+\tau_2^0=C_1R_1+C_2\left(R_1+R_2\right)
b_{2}=\tau _{1}^{0}\tau_{2}^{1}=C_1R_1 C_2R_2


H\left ( s \right )=\frac{a_0+a_1s+a_2s^2}{1+b_1s+b_2s^2}=\frac{C_2R_2s}{1+\left[C_1R_1+C_2\left(R_1+R_2\right)\right]s+C_1R_1C_2R_2s^2}


Example6: Determine H\left(s\right)=\frac{v_{out}}{v_{in}} from Figure 6a


Figure 6: a) A 2nd order LC trap with CS amp b) Model for H^0 calculation, c) Model for H^L calculation, d) Model for H^C calculation, e)Model for H^{LC} calculation, f) Circuit for \tau _{L}^{0} calculation, g) Circuit for \tau _{C}^{0} calculation, h) Circuit for \tau _{C}^{L} calculation.

H\left ( s \right )=\frac{a_0+a_1s+a_2s^2}{1+b_1s+b_2s^2}

1. H^0 :  H when C=L=0

 From Figure 6b, H^0=-g_m\left(R_1||R_2\right)

2. H^L :  H when L\rightarrow \infty  and C=0 
 
From Figure 6c, H^L=0

3. H^C :  H when C\rightarrow \infty  and L=0 
 
From Figure 6d, H^C=-g_m\left(R_1||R_2\right)=H^0

4. H^{LC} :  H when L,C\rightarrow \infty  
 
From Figure 6e, H^{LC}=-g_m\left(R_1||R_2\right)=H^0

5. \tau _{L}^{0} : Time constant associated with L when C=0

From Figure 6f, \tau _{L}^{0}=\frac{L} {R _{L}^{0}}=\frac{L}{R_1+R_2}

6. \tau _{C}^{0} : Time constant associated with C when L=0

From Figure 6g, \tau _{C}^{0}=C \times R _{C}^{0}=C\times0=0

7. \tau _{C}^{L} : Time constant associated with C when L \rightarrow \infty

From Figure 6h, \tau _{C}^{L}=C \times R _{C}^{L}=C\left(R_1+R_2\right)


a_{0}=H^{0}
a_{1}=\tau _{L}^{0}H^{L}+\tau _{C}^{0}H^{C}=\frac{L}{R_1+R_2} \times 0+0 \times H^0=0
a_{2}=\tau _{L}^{0}\tau_{C}^{L}H^{CL}=\frac{L}{R_1+R_2} \times C\left(R_1+R_2\right) \times H^0=LCH^0
b_1=\tau_L^0+\tau_C^0=\frac{L}{R_1+R_2}
b_{2}=\tau _{L}^{0}\tau_{C}^{L}=LC

H\left ( s \right )=\frac{a_0+a_1s+a_2s^2}{1+b_1s+b_2s^2}=\frac{H^0+LCH^0s^2}{1+\frac{L}{R_1+R_2}s+LCs^2}=-g_m\left(R_1||R_2\right)\frac{1+LCs^2}{1+\frac{L}{R_1+R_2}s+LCs^2}


In Part3, I will take some 2nd order examples with active elements (MOSFETs). Till then, try to have a good grip on this technique and also revise the Look in impedance of MOSFET circuits.


No comments:

Post a Comment